| RST 2 Sample ID | P001-TW-1001-1 | P001-TW-1002-1 | P001-TW-1003-1 | P001-TW-1004-1 | P001-TW-1005-1 | P001-TW-1006-1 | P001-TW-1007-1 | P001-TW-1008-1 | P001-TW-1009-1 | P001-TW-1010-1 | P901-TW-1011-1 | P001-TW-1012-1 | P001-TW-1013-1 | P001-TW-1014-1 | |---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------| | LP Sample ID | BAZS5 | BAZS6 | BAZS7 | BAZS8 | BAZS9 | BAZT0 | BAZT1 | BAZT2 | BAZT3 | BAZT4 | BAZT5 | BAZT6 | BAZT7 | BAZT8 | | | Area01 Ares01 | | rea | _ | | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | | ampling Date | 9/23/2013 | 9/23/2013 | | | | | Liquid Waste (ug/kg) (ug/k | | Sample Matrix (Unit) | Liquid Waste (ug/kg) | ND ND | ND ND | 8,500 | ND ND | ND ND | ND ND | ND | ND | | Benzaldehyde
Phenol | ND
ND | ND
ND | ND
2,100 J | ND
14,000 | 350,000
ND | ND
ND | ND
ND | ND | Bis-(2-Chloroethyl) ether | ND | 2-Chlorophenol | ND ND
ND | | 2-Methylphenol | ND | ND | ND | ND | ND | ND
ND ND ND | | 2,2'-oxybis(1-Chloropropane) | ND
ND | ND
ND | ND
3,200 J | ND
ND | ND
ND | 6,900 | 5,800 J | ND ND | 7,200 | ND | ND | ND | ND | ND | | Acetophenone
4-Methylphenoi | ND ND | | N-Nitroso-di-n-propylamine | ND | Hexachloroethane | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Nitrobenzene | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND ND | ND | ND | ND | | Isophorone
2-Nitrophenol | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND ND | | 2-Nitrophenol 2,4-Dimethylphenol | ND ND | ND | ND ND | | Bis(2-Chloroethoxy)methane | ND ND
ND | | 2,4-Dichlorophenol | ND | ND | ND | ND | ND | ND | ND
ND | ND
1,800,000 E | ND
ND | ND
44,000 | ND
12,000 | ND
ND | ND
1,800 J | ND
11,000 | | Naphthalono | ND
ND | 28,000
ND | ND
ND | 1,400 J
ND | ND
ND | ND
ND | ND
ND | 1,890,000 E
ND | ND
ND | ND | ND | ND | ND | ND | | 4-Chloroaniline Hexachlorobutadiene | ND
ND | ND
ND | ND | ND ND | | Caprolactam | ND | 4-Chloro-3-methylphenol | ND ND
100 000 | ND | ND
130,000 | ND
ND | ND
910 J | ND
1,900 J | ND
15,000 | | 2-Methylnaphthalene | 18,000 J
ND | 26,000
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 160,000
ND | ND
ND | ND | ND ND | ND ND | ND ND | ND | | Hexachlorocyclopentadiene 2,4,6-Trichlorophenol | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND ND | | 2,4,5-Trichlorophenol | ND | 1.1'-Biphenyl | ND | ND | ND | 2,800 J | ND ND
ND | ND
ND | | 2-Chloronaphthalene | ND | ND | ND | ND | ND | ND
ND | 2-Nitroaniline | ND
ND | ND
ND | ND
ND | ND
1,400 J | ND
ND | ND
ND | ND
ND | ND | ND | ND | 4,400 J | ND | ND | ND | | Dimethylphthalate
2,6-Dinitrotoluene | ND | ND | ND | ND ND | | Acenaphthylene | ND . ND | | 3-Nitroaniline | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Aconaphthene | ND | ND | ND | ND
ND | 2,4-Dinitrophenol 4-Nitrophenol | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | Dibenzofuran | ND | 2,4-Dinitrotoluene | ND | Diethylphthalate | 25,000 J | 110,000 | 7,400 | ND | 630,000 E | 27,000
ND | 57,000
ND | 2,000,000 E
ND | 16,000
ND | 450,000 E
ND | ND
ND | ND
ND | ND
ND | 6,700
ND | | Fluorene | ND
ND ND | ND ND | ND | ND | ND | ND | ND | | 4-Chlorophenyl-phenyl ether 4-Nitroaniline | ND | 4,6-Dinitro-2-methylphenol | ND | N-Nitrosodiphenylamine | 61,000 | ND
ND | 3,800 J | ND
ND | ND
ND | 3,200 J | ND | ND
ND | ND
ND | 53,000 | 3,600 J | ND
ND | 1,400 J
ND | 6,600
ND | | 1,2,4,5 Tetrachlorobenzene
4-Bromophenyl-phenylether | ND
ND | Hexachiorobenzene | ND ND | | Atrazine | ND | Pentachlorophenol | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | Phonanthrone | ND
ND | Anthracene
Carbazole | ND
ND ND | ND ND | ND ND | ND | ND ND | ND ND | ND | | Di-n-butylphthalate | 25,000 BJ | ND | ND | ND | 38,000 B | 62,000 B | 12,000 BJ | 74,000 | 1,500 BJ | 62,000 | ND | ND | 16,000 | 9,800 | | Fluoranthene | ND | Pyrone
Part the sea debthe late | ND
ND ND
1,200 BJ | ND
ND | ND
ND | ND
ND | ND
4,700 BJ | ND
ND | | Butylbenzylphthalate
3,3'-Dichlorobenzidine | ND
ND 1,200 BJ
ND | ND
ND | ND
ND | ND
ND | 4,700 BJ
ND | ND
ND | | Benzo(a)anthracese | ND | Chrysene | ND | bis(2-Ethylhexyl)phthalate | 260,000 B | ND | 2,400 BJ | 1,700 BJ | ND | ND | ND | ND | 3,000 BJ | 710,000 E | ND | ND | ND | ND | | Di-n-octylphthalate | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 10,000 J | ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | Benzo(b)fluoranthene
Benzo(k)fluoranthene | ND
ND | Benzo(a)pyrene | ND ND | ND | ND ND | ND ND | ND | ND | ND
ND | ND | ND ND | ND | ND ND | ND
ND | ND | ND | | Indeno(1,2,3-cd)pyrene | ND | Dibenzo(a,h)anthracene | ND | Benzo(g,h,i)perylene | ND | 2, 3, 4, 6 -Tetrachlorophenol | ND Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Bidded. E-Sample concentrations exceeded the upper level of the calibration range. J-Indicates the reported value is an estimate. B-Indicates maybe found in the associated method blank. ND-Indicates the analyte was analyzed for but not detected. DF-Dattion Factor Page 1 of 9 | RST 2 Sample ID | P001-TW-1015-1 | P001-TW-1015-2 | P001-DW-1016-1 | P001-DW-1019-1 | P001-DW-1024-1 | P001-DW-2001-1 | P001-DW-2003-1 | P001-DW-2004-1 | P001-DW-2006-1 | P001-DW-2006-2 | P001-DW-2007-1 | P001-DW-2011-1 | P001-DW-2016-1 | P001-DG-2020-1 | |--|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|--------------------------|---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | CLP Sample ID | BAZT9 | BAZWO | BB004 | BB005 | BB006 | BAZQ1 | BAZQ2 | BAZQ3 | BAZQ4 | BAZQ5 | BAZQ6 | BAZQ7 | BAZS4 | BAZWI | | Area | Area01 | Area01 | Area01 | Area01 | Area01 | Area02 | | 9/23/2013 | 9/23/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/20/2013 | 9/20/2013 | 9/20/2013 | 9/20/2013 | 9/20/2013 | 9/20/2013 | 9/20/2013 | 9/23/2013 | 9/23/2013 | | Sampling Date | | | | | | | | | | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Sludge Waste (ug/kg) | | Sample Matrix (Unit) | Liquid Waste (ug/kg) | Liquid Waste (ug/leg) | Liquid Waste (ug/kg) ND | Liquid Waste (ug/kg)
4,000 J | Liquid Waste (ug/kg) | ND ND | | Benzaldehyde
Phenol | ND
ND | ND
ND | ND
610,000 | ND
ND | ND
ND | 2,300 J | 27,000 | 2,400 J | ND ND | 1,400 J | ND | 27,000 | ND | ND | | Bis-(2-Chloroethyl) ether | ND | 2-Chiorophenol | ND | 2-Methylphenol | ND | ND | ND | ND | ND | 4,000 J | ND | 2,2'-oxybis(1-Chloropropane) | ND | ND | ND | ND | ND | ND | ND
ND | ND
5,800 B | ND
9,200 B | ND
4,500 BJ | ND
18,000 B | ND
16,000 B | ND
ND | ND
ND | | Acetophenone | ND
ND | ND
ND | ND
22,000 J | ND
ND | ND
ND | 9,200 B
ND | ND
ND | 5,800 B
ND | 9,200 B
ND | 4,500 BJ | ND ND | 5,400 | ND | ND | | 4-Methylphenol
N-Nitroso-di-n-propylamine | ND | ND
ND | ND ND | | Hexachloroethane | ND | Nitrobenzene | ND | Isophorone | ND | ND | 23,000 J | ND | 2-Nitrophenol | ND | ND | ND
ND | 2,4-Dimethylphenol Bis(2-Chloroethoxy)methane | ND
ND ND ND | ND | | 2,4-Dichlorophenol | ND | ND | ND ND | | Naphthalene | 200,000 E | 260,000 E | 11,000 J | 280,000 | 160,000 | ND | 670,000 E | 4,800 | 12,000 | ND | 15,000 | 4,800 J | ND | ND | | 4-Chloroaniline | ND | Hexachlorobutadiene | ND | Caprolactam | ND
ND | ND
ND | ND | ND
ND | 4-Chloro-3-methylphenol
2-Methylnaphthalene | ND
1,400 J | ND
1,900 J | ND
ND | ND
ND | ND
ND | ND
ND | ND
14,000 | ND
ND | Hexachlorocyclopentadiene | ND ND | ND ND | ND ND | ND | ND | ND | ND ND | | 2,4,6-Trichlorophenol | ND | 2,4,5-Trichlorophenol | ND | 1.1'-Biphenyl | ND | 2-Chloronaphthalene | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND | ND | ND | ND | | 2-Nitroaniline Dimethylphthalate | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
11,000 | ND
ND | ND
ND | ND
ND | ND
1,100 J | ND
ND | ND
ND | ND
4,000 J | | 2,6-Dinitrotoluene | ND | ND | ND | ND ND | ND | ND | ND ND | ND | ND ND | ND | 3,500 J | ND | ND ND | ND | | Acenaphthylene | ND | 3-Nitroaniline | ND | Acenaphthene | ND | 2,4-Dinitrophenol | ND
ND ND | ND | ND | | 4-Nitrophenol
Dibenzofuran | ND
ND | 2,4-Dinitrotoluene | ND ND | ND | | Diethylphthalate | ND | ND | ND | ND | ND | ND | 14,000 B | 9,000 B | 3,500 BJ | 2,600 BJ | 50,000 B | 9,400 B | ND | ND | | Fluorene | ND | 4-Chlorophenyl-phenyl ether | ND | 4-Nitroaniline | ND
ND ND | 4,6-Dinitro-2-methylphenol
N-Nitrosodiphenylamine | ND
ND ND
9,000 | ND
ND | ND
ND | ND
ND | | 1,2,4,5 Tetrachlorobenzene | ND ND | ND | ND ND | ND ND | ND ND | ND | | 4-Bromophenyl-phenylether | ND | Hexachlorobenzene | ND | Atrazine
Bantachlorophanol | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND | ND
ND | ND | ND
ND | ND | ND | ND | | Pentachiorophenol
Phenanthrene | ND
ND | Anthracese | ND | ND | ND | 24,000 J | ND ND | ND
ND | | Carbazole | ND | Di-n-butylphthalate | ND | ND | ND | ND | ND | 3,000 J | ND | 4,600 J | ND |
ND | 45,000 | 1,500 J | ND | ND | | Fluoranthene | ND | Pyrene
Butylbenzylphthalate | ND
ND ND
5 400 | ND
ND | ND | ND | ND | ND | ND | | 3,3'-Dichlorobenzidine | ND
ND 5,400
ND | ND
ND | ND
ND | 130,000 E
ND | ND
ND | ND
ND | ND
ND | | Benzo(a)anthracene | ND | ND | ND ND | ND | ND ND | ND | ND ND | ND | ND
ND | ND | ND ND | ND | ND
ND | ND
ND | | Chrysene | ND ND | ND | | bis(2-Ethylhoxyl)phthalate | 4,400 J | ND | ND | 460,000 | 6,600,000 E | ND | ND | 1,300 J | ND | ND | 26,000 | ND | ND | ND | | Di-ts-octy/phthalate | ND | ND | ND | ND | ND | 7,800 | ND | ND | ND | 13,000 | ND | ND | ND | ND | | Benzo(b)fluoranthene | ND | Benzo(k)fluoranthene | ND
ND | ND | ND
ND | ND
ND | ND | Benzo(a)pyrene
Indeno(1,2,3-ed)pyrene | ND
ND ND | ND | ND | | Dibenzo(a,h)anthracene | ND
ND ND | | Benzo(g,h,i)perylene | ND | ND | ND | ND | ND | ND | ND
ND | 2, 3, 4, 6 -Tetrachlorophenol | ND ND | ND | Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Belded. F- Sample concentrations exceeded the upper level of the calibration range. J- Indicates the reported value is an estimate. B- Indicates analyte found in the associated method blank. ND- Indicates the analyte was analyzed for but not detected. DF- Dilution Factor | RST 2 Sample ID | P001-DW-2025-1 | P001-DW-2034-1 | P001-DW-2036-1 | P001-DW-2041-1 | P001-DW-2042-1 | P001-DW-2046-1 | P001-DW-2047-1 | P001-DW-2048-1 | P001-DW-2050-1 | P001-DW-2051-1 | P001-DW-2058-1 | P001-DW-2059-1 | P001-DW-2060-1 | P001-DW-2062-1 | |---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------| | CLP Sample ID | BAZS1 | BAZW2 | BAZS2 | BAZS0 | BAZS3 | BAZW3 | BOAG9 | BAZW4 | BAZW7 | BAZW6 | BAZX4 | BAZX0 | BAZY1 | BAZX2 | | Area | Area02 Ares02 | | Sampling Date | 9/23/2013 | 9/24/2013 | 9/23/2013 | 9/23/2013 | 9/23/2013 | 9/24/2013 | 9/24/2013 | 9/24/2013 | 9/24/2013 | 9/24/2013 | 9/25/2013 | 9/25/2013 | 9/25/2013 | 9/25/2013 | | | | | | | | | | | | | Liquid Waste (ug/lg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg | | Sample Matrix (Unit) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/lg) | Liquid Waste (ug/kg) | ND ND | ND ND | 1,200,000 EB | ND ND | | Benzaldehyde
Phenol | 29,000 J
ND | ND
ND | ND
ND | ND
ND | ND
ND | 1,800 J
ND | ND
ND | ND
ND | ND
ND | ND
ND | 370,000 E | 4,100 J | ND | ND
ND | | Bis-(2-Chloroethyl) ether | ND ND | ND | ND | ND | | 2-Chlorophenol | ND | 2-Methylphenol | ND | 2,2'-oxybis(1-Chloropropane) | ND | Acetophenone
4-Methylphenol | ND
ND 1,900 J
ND | ND
ND | ND
ND | ND
ND | 3,700 J
12,000 | ND
ND | 14,000
ND | | N-Nitroso-di-n-propylamine | ND
ND | ND | ND ND | ND | ND | ND | ND | ND | ND ND | ND ND | ND | ND | ND | ND | | Hexachloroethane | ND | Nitrobenzene | ND | Isophorone | ND | 2-Nitrophenol | ND
ND | ND | ND
ND | ND
ND | ND | ND | ND | ND
ND | ND | ND | ND | ND | ND | ND | | 2,4-Dimethylphenol
Bis(2-Chloroethoxy)methane | ND
ND | 2,4-Dichlorophenol | ND ND | ND | ND
ND | ND
ND | ND | ND ND | ND ND | ND
ND | ND ND | ND ND | ND ND | ND
ND | ND ND | ND
ND | | Naphthalene | 17,000 J | ND | ND | 33,000 | 318,000 | ND | 420,000 E | ND | ND | 10,000 | 80,000 | ND | 180,000 E | 4,100 J | | 4-Chloroaniline | ND | Hexachlorobutadiene | ND | Caprolactam | ND
ND ND | | 4-Chloro-3-methylphenol
2-Methylnaphthalene | ND
17,000 J | ND
ND | ND
3,400 J | ND
3,300 J | 1,000,000 E | ND
ND | ND
59,000 | ND
ND | ND
ND | 9,100 | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachlorocyclopentadiene | ND ND | ND | ND ND | ND | ND | ND ND | ND | ND ND | ND ND | ND | ND ND | ND
ND | ND ND | ND | | 2,4,6-Trichlorophenol | ND | 2,4,5-Trichlorophenol | ND | 1,1'-Biphenyt | ND | 2-Chloronaphthalone | ND | 2-Nitroaniline | ND
ND | ND
1,900 J | ND
ND | ND
ND | ND
ND | ND
ND | ND | Dimethylphthalate 2,6-Dinitrotoluene | ND ND | ND | ND ND | ND ND | ND
ND | ND ND | ND
ND | Acenaphthylene | ND ND | ND | ND ND | ND | | 3-Nitroaniline | ND | Acenaphthene | ND | 2,4-Dinitrophenol | ND | 4-Nitrophenol | ND | Dibenzofuran 2.4-Dinitrotoluene | ND
ND | Diethylphthalate | 200,000 | 5,700 | ND ND | 21,000 J | ND ND | ND ND | ND ND | ND | ND ND | 110,000 E | ND
ND | ND
ND | ND
ND | ND
ND | | Fluorene | ND ND | ND | ND | ND | ND | | 4-Chlorophenyl-phonyl ether | ND | 4-Nitroaniline | ND | 4,6-Dinitro-2-methylphenol
N-Nitrosodiphenylamine | ND
24,000 J | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
CO 000 | ND ND | | N-Nitrosodiphenyiamine
1,2,4,5 Tetrachlorobenzene | 24,000 J
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 69,000
ND | ND
ND | 4-Bromophenyl-phenylether | ND ND | ND | ND | ND | ND ND | ND | ND
ND | Hexachiorobenzene | ND | Atrazine | ND | Pentachlorophenol | ND
ND | ND
ND | ND
ND | ND | Phenanthrene
Anthracene | ND
ND | ND
ND | ND
ND | ND
ND | 230,000 | ND | ND
ND | ND | Carbazole | ND
ND ND | | Di-n-butylphthalate | ND | ND | ND ND | 18,000 J | 180,000 | ND
ND | 9,500 J | ND
ND | Fluoranthene | ND ND
ND | ND
ND | | Pyrene | ND | Butylbenzylphthalate | ND | ND | ND | 20,000 BJ | ND | 3,3'-Dichlorobenzidine | ND
ND | ND | ND
NB | ND | Benzo(a)anthracene
Chrysene | ND
ND ND | ND | ND | ND | ND | ND | | bis(2-Ethylhexyl)phthalate | ND ND | 32,000 | ND
ND | 21,000 J | ND
ND ND | ND | ND | | Di-n-octylphthalate | ND | ND ND | ND ND | ND ND | ND | ND | ND ND | ND
ND | Benzo(b)fluoranthene | ND ND
ND | ND
ND | ND
ND | ND
ND | | Benzo(k)fluoranthene | ND ND | ND | ND | ND | | Benzo(a)pyrene | ND | Indeno(1,2,3-cd)pyrene | ND | Dibenzo(a,h)anthracene | ND
ND | ND
ND | ND
ND | ND | Benzo(g,h,i)perylene
2, 3, 4, 6 -Tetrachlorophenol | ND
ND | ND
ND | ND
ND | ND
ND | ND
NTD | ND
ND | ND | | 5 X DF | NU | ND | 5 X DF | ND
5 X DF | ND | ND
5 X DF | ND Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Boldred. E- Sample concentrations excueeded the upper level of the calibration range. J- Indicates the reported value is no estimate. B- Indicates maybe found in the associated method blands. ND- Indicates the nearly was smalyzed for but not detected. DF - Dilution Factor Page 3 of 9 | RST 2 Sample ID | P001-DW-2063-1 | P001-DW-2064-1 | P001-DW-2065-1 | P001-DW-2067-1 | P001-DW-2069-1 | P001-DW-2073-1 | P001-DW-2074-1 | P001-DW-2076-1 | P001-DW-2081-1 | P001-DW-2086-1 | P001-DG-2087-1 | P001-DW-2090-1 | P001-DW-2090-2 | BB009 | |---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------| | | BAZX7 | BAZR7 | BAZXB | BAZX5 | BAZR8 | BAZW9 | BAZX6 | BAZX9 | BAZR9 | BAZX1 | BAZY0 | BB007 | BB008 | | | LP Sample ID | | Area02 | Area02 | Area02 | Area02 | Area02 | Ares02 | Area02 | Ares02 | Area02 | Area02 | Area02 | Area02 | Area02 | | rea | Area02 | | | 9/25/2013 | 9/23/2013 | 9/25/2813 | 9/25/2013 | 9/25/2013 | 9/23/2013 | 9/25/2013 | 9/25/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | | impling Date | 9/25/2013 | 9/23/2013 | 9/25/2013 | | | | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Sludge Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/k | | imple Matrix (Unit) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg)
2,800 BJ | ND ND | ND ND | | enzaldehyde | ND | ND
ND | ND
ND | 77,000 B
ND | 3,500 J
ND | 2,800 BJ
ND | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | | enol | ND
ND | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | ND
ND | ND | | is-(2-Chloroethyl) ether
Chlorophenol | ND ND
ND | ND
ND | ND
ND | ND | ND | ND | | Methylphenol | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | 2'-exybis(1-Chloropropane) | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | 3,000 J | ND | 2,600 J | ND | ND | ND | ND | ND | | cetophenone | ND
ND | 14,000 J
ND | ND
ND | ND
ND | ND ND
ND | ND
ND | ND
ND | | -Methylphenol
-Nitroso-di-n-propylamine | ND
ND | ND ND
ND | ND
ND | ND
ND | ND ND | ND | | exachloroethane | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | itrobenzene | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND | ND | ND | ND | | ophorone | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | | Nitrophenol | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | | .4-Dimethylphenol
is(2-Chloroethoxy)methano | ND ND | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND | | 4-Dichlorophenol | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | 270,000 E | ND | 140,000 | 140,000 | 37,000 J | | aphthalone | ND | 21,000 J | 530,000 E | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | | Chloroaniline | ND
ND | ND
ND | ND
ND | ND
ND | ND ND
ND | ND
ND | ND
ND | | Sexachlorobutadiene
Deprolactam | ND
ND | ND
ND | ND ND
ND | ND
ND | ND
ND | ND
ND | ND | | -Chloro-3-methylphenol | ND ND
ND |
ND
ND | ND
2,160 J | ND
ND | 33,000 J | 33,000 J | 11,000 J | | -Methylnaphthalene | ND | 21,000 J | 3,000 J | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | lexachlorocyclopentadiene | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND
ND | | 4,6-Trichlorophenol | ND
ND | ND
ND | ND
ND | ND ND
ND | ND
ND | ND | | 4,5-Trichlorophenol
1'-Biphenyl | ND 1,200 J | ND
ND | ND
ND | ND | ND | | -Chloronaphthalene | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | -Nitroaniline | ND | ND | ND | ND
ND | ND
1,900 J | ND
ND | ND
ND | ND | Dimethylphthalate | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND. | ND | ND | ND | ND
ND | ND
ND | | 2,6-Dinitrotoluene
Acenaphthylene | ND
ND | ND ND
ND | ND
ND | ND
ND | ND | | -Nitroaniline | ND ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | Acenaphthene | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND | ND | ND | ND | | 2,4-Dinitrophenol | ND | ND | ND
ND | ND
ND | ND
ND | ND | ND ND | | 4-Nitrophenol | ND
ND | ND
ND | ND ND | ND ND | ND | ND | ND | ND | ND | 5,500 | ND | ND | ND
ND | 17,000 J
ND | | Dibenzofuran
2.4-Dinitrotoluene | ND 6,500
ND | ND
ND | ND
ND | ND | ND | | Diethylphthalate | ND | ND | ND | 2,800 J | 2,300 J | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND | ND | | luorene | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND | 4-Chlorophenyl-phenyl ether | ND
ND | ND
ND | ND
ND | ND
ND | ND ND
ND | | I-Nitroaniline
I,6-Dinitro-2-methylphenol | ND
ND | ND ND
ND | ND
ND | ND
ND | 69,000 | | V-Nitrosodiphenylamine | ND | 23,000 J | ND | ND | 3,000 J | ND | ND | ND | ND
ND | ND
ND | ND ND | ND
ND | ND | ND | | ,2,4,5 Tetrachlorobenzene | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | ND | | -Bromophenyl-phenylether | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | | lexachlorobenzene
Atrazine | ND
ND | ND
ND | ND
ND | ND
ND | ND ND
ND | ND
ND | | Pentachlorophenol | ND ND
ND | ND
ND | ND
ND | ND
ND | ND ND | | Phenanthrene | ND ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | Anthrucene | ND | ND | ND
ND | ND
NTD | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | ND | | Carbazole | ND
ND | ND
ND | ND
ND | ND
1,500 J | 12,000 | ND ND | ND
ND | | N-n-butylphthalate
Puoranthene | ND ND | ND | ND | ND ND | ND | ND | ND | ND | ND | 11,000 | ND
ND | ND
ND | ND
ND | ND
ND | | yrene | ND ND
6,100 B | 3,100 J
ND | ND
ND | ND
ND | ND | 200,000 | | lutylbenzylphthalate | ND | ND | ND | ND | 25,000 B
ND | ND
ND | ND
ND | ND
ND | 6,100 B
ND | ND | ND | ND | ND | ND | | 3'-Dichlorobenzidine | ND
NTS | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | enzo(a)anthracene | ND
ND | ND
ND | ND
ND | ND
ND | ND | hrysene
is(2-Ethylhexyl)phthalate | ND
ND | 95,000 B | 3,900 J | ND | 3,300 J | ND | ND | ND | ND | ND | ND
ND | 97,000
ND | 110,000
ND | ND
ND | | i-n-octylphthalate | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | enzo(b)fluoranthene | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | enzo(k)fluoranthene | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND ND | ND | ND | ND | ND | ND | | Senzo(a)pyrene | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | | ndeno(1,2,3-od)pyrene
Dibenzo(a,h)anthracene | ND ND | ND ND | ND
ND | ND
ND | | Benzo(g,h,i)perylene | ND ND
ND | ND
ND | ND
ND | ND
ND | | 2, 3, 4, 6 -Tetrachlorophenol | ND 10 X DF | 10 X DF | 10 X DF | Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Bolded. E-Sample concentrations exceeded the upper level of the calibration runge. J-Indicates the reproted value is an estimate. B-Indicates analyte found in the associated method blank. ND-Indicates the analyte was analyzed for but not detected. DF-Dilution Factor. Page 4 of 9 | RST 2 Sample ID | P001-DW-2094-1 | P001-DW-2100-1 | P001-DW-2112-1 | P001-DW-2113-1 | P001-TW-2115-1 | P001-DW-2121-1 | P001-DW-4006-1 | P001-DW-5001-1 | P001-DW-5002-1 | P001-DW-5006-1 | P001-DW-5006-2 | P001-DW-5009-1 | P001-DW-5013-1 | P001-DW-5023-1 | |--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------| | CLP Sample ID | BB010 | BB011 | BB012 | BB013 | BB014 | BB015 | BB016 | BAZN1 | BAZN2 | BAZN3 | BAZN4 | BAZN5 | BAZN6 | BAZN7 | | Area | Area02 | Area02 | Area02 | Area02 | Area02 | Area02 | Area04 | Area05 | Sampling Date | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/18/2013 | 9/18/2013 | 9/18/2013 | 9/18/2013 | 9/18/2013 | 9/18/2013 | 9/18/2013 | | Sample Matrix (Unit) | Liquid Waste (ug/kg) | | | | | | | Benzaldehyde | ND | ND | ND | ND ND | ND ND | ND ND | ND ND | | Liquid Waste (ug/kg) | Liquid Waste (ug/kg | | Phenol | ND ND | ND
ND | ND
ND | ND
7,500 | ND
6,300 | ND
ND | ND
ND | ND
ND | | Bis-(2-Chloroethyl) ether | ND | 2-Chlorophenol | ND | 2-Methylphenol
2,2'-oxybis(1-Chloropropane) | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | Acetophenone | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | 4-Methylphenol | ND | ND | ND | ND | 12,000 J | ND | ND | ND
ND | ND
ND | 6,700 B
ND | 7,000 B
ND | ND
ND | ND
ND | 1,100 BJ | | N-Nitroso-di-n-propylamine | ND ND | ND
ND | ND
ND | ND
ND | | Hexachloroethane | ND | Nitrobenzene | ND
ND | ND
ND | ND | Isophorone
2-Nitrophenol | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | 2,4-Dimethylphenol | ND ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | Bis(2-Chloroethoxy)methane | ND | ND | ND | ND | ND | ND | ND
ND ND | | 2,4-Dichlorophenol | ND ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | | Naphthalene | ND | 610,000 | 130,000 | ND | ND | ND | ND | 41,000 | 70,000 | 2,100 J | 3,200 J | 380,000 | ND | ND
ND | | 4-Chlorosniline | ND | Hexachlorobutadiene
Caprolactam | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | 4-Chioro-3-methylphenol | ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | 2-Methylnaphthalene | ND | 25,000 J | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
34,000 | ND
120,000 | ND
ND | ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND ND
ND | ND
ND | 1,100,000 E
ND | 1,100 J | ND | | 2,4,6-Trichlorophenol | ND | ND | ND | ND . | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | | 2,4,5-Trichlorophenol | ND ND
ND | ND
ND | | 1,1'-Biphenyl 2-Chloronaphthalene | ND . | ND
ND | ND | ND | ND | ND | ND | 1,800 J | ND | ND | ND | 170,000 | ND | ND | | 2-Nitroaniline | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | Dimethylphthalate | 15,000 J | 29,000 J | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | 2,6-Dinitrotoluene | ND ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | Acenaphthylene | ND ND | ND
ND | ND
ND | ND
ND | ND | | 3-Nitroaniline | ND ND | ND
ND | ND
ND | | Acenaphthene
2,4-Dinitrophenol | ND
ND | ND | 4-Nitrophenol | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | Dibenzofuran | ND | ND ND | ND
ND | 50,000 | ND
ND | ND
ND | ND
ND | ND | 2,4-Dinitrotoluene | ND | ND | ND | ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | Diethylphthalate | ND | ND | ND | ND | ND | 43,000 J | ND | 2,100 J | ND
ND | ND
ND | ND
2,900 J | ND
ND | ND | ND | | Fluorene | ND 930 J | ND | ND | ND 1 | ND | ND
ND | ND
ND | | 4-Chlorophenyl-phenyl ether 4-Nitroaniline | ND
ND | ND | 4,6-Dinitro-2-methylphenol | ND
ND | ND
ND | ND
ND | ND
ND | ND | N-Nitrosodiphenylamine | ND | 71,000 | ND ND | ND ND | ND
ND | ND
15,000 J | ND
ND | ND | 1,2,4,5 Tetrachlorobenzene | ND | ND | ND | ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | 7,200 | 11,000 | ND | ND | ND | | 4-Bromophenyl-phenylether | ND ND | ND | ND
ND | ND
ND | ND | ND | ND | ND | | Hexachlorobenzene | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Atrazine
Pentachiorophenol | ND
ND | ND
ND | ND
ND | ND ND | ND | ND
ND | ND
ND | | Phonanthrone | ND
ND | ND
ND | ND
ND | ND
ND | ND | Anthracene | ND ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND | 1,200 J | 29,000 J | 2,900 J | 3,900 J | 150,000 | ND | ND | | Carbazole | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | 24,000 J | ND | ND | | Di-n-butylphthalate | ND | ND | ND | ND | ND | 590,000 | ND
ND | ND
ND | ND
ND | 5,500
38,000 | 7,400 | ND | ND | ND | | Fluoranthene | ND ND | ND ND | 49,000
ND | ND
ND | ND
ND | ND | | Pyrene
Butylbenzylphthalate | ND
ND | ND 1,200 J | 42,000 J | ND
ND | ND
ND | | 3,3'-Dichlorobenzidine | ND
ND | 52,900
ND | ND
ND | ND | ND | 1,000,000 E | ND | 1,300 BJ | ND | 21,000 B | 28,000 B | ND ND | ND ND | ND
ND | | Benzo(a)anthracene | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND | Chrysene | ND ND | ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | bis(2-Ethylhexyl)phthalate | ND | 85,000 | ND | ND ND
| ND | ND
ND | ND
ND | ND A 400 T | ND | ND | ND | ND | ND | ND | | Di-n-octylphthalate | ND | ND | ND | ND | ND ND | ND ND | ND
ND | 4,400 J
ND | ND
ND | 220,000 E | 270,000 E | ND | 1,500 J | ND | | Benzo(b)fluoranthene | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | Benzo(k)fluoranthene | ND ND | ND
ND | ND
ND | ND
ND | ND | ND | | Benzo(a)pyrene | ND
ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | | Indeno(1,2,3-ed)pyrene
Dibenzo(a,h)anthracene | ND
ND | ND ND | ND ND | ND
ND | ND
ND | | Benzo(g,h,i)perylene | ND
ND | ND
ND | ND
ND | ND ND | ND | ND ND | ND
ND | | 2, 3, 4, 6 -Tetrachlorophenol | ND ND | ND
ND | ND
ND | ND | | 10 X DF | ND Notes: All rouths are preliminary and have not gone through any data review or validation process. Detected concentrations are Bolded. E- Sample concentrations exceeded the upper level of the calibration range. J- Indicates the reported value is an estimate. B- Indicates the reported value is an estimate. B- Indicates the snalyte found in the associated method blank. ND- Indicates the analyte was analyzed for but not detected. DF- Daltrion Feet. | RST 2 Sample ID | P001-DW-5024-1 | P001-DW-5027-1 | P001-DW-5029-1 | P001-DW-6006-1 | P001-DW-6009-1 | P001-DW-6010-1 | P001-DW-6011-1 | P001-DW-6017-1 | P001-DW-6018-1 | P001-DW-6021-1 | P001-DW-6024-1 | P001-DW-6035-2 | P001-TW-6038-1 | P001-TW-6038-2 | |--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | | BAZN8 | BAZN9 | BAZP0 | BAZP1 | BAZP9 | BAZQ0 | BAZP2 | BAZP3 | BAZP4 | BAZP5 | BAZP6 | BAZQ8 | BB017 | BB018 | | CLP Sample ID | | | | | Area06 | Area | Area05 | Area05 | Area05 | Area06 | | | | 9/19/2013 | 9/19/2013 | 9/19/2013 | 9/19/2013 | 9/20/2013 | 9/27/2013 | 9/27/2013 | | Sampling Date | 9/18/2013 | 9/18/2013 | 9/18/2013 | 9/19/2013 | 9/18/2013 | 9/19/2013 | 9/19/2013 | | | Liquid Waste (ug/kg) | | Sample Matrix (Unit) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ng/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) | Liquid Waste (ug/kg) ND | ND | | Benzaldehyde | ND
ND | ND
ND | ND
1,400 J | ND
ND | ND
ND | ND
ND | ND
ND | 14,000 | ND | 1,400 J | ND | 18,000 | 16,000 J | 16,000 J | | Phenol Bis-(2-Chloroethyl) ether | ND ND | ND | ND ND | ND
ND | | 2-Chlorophenol | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | | 2-Methylphenol | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND | ND | ND | ND | | 2,2'-oxybis(1-Chloropropane) Acetophenone | ND
ND | ND
ND | ND
1,600 BJ | 22,000 B | ND | ND | ND | 17,000 B | 13,000 B | 4,200 BJ | ND | 2,400 BJ | ND | ND | | 4-Methylphenol | ND 56,000 | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | | N-Nitroso-di-n-propylamine | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | Hexachloroethane | ND
ND ND | ND | ND | ND ND | ND | ND | ND | | Nitrobenzene
Isophorone | ND
ND | ND | ND | ND ND | | 2-Nitrophenol | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 2,4-Dimethylphenol | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND | ND | | Bis(2-Chloroethoxy)methane 2,4-Dichlorophenol | ND
ND ND | ND | ND | ND | ND | ND | | 2,4-Dichlorophenoi
Naphthalene | ND ND | 1,300,000 E | ND ND | 20,000 | ND | ND | ND | ND | 7,300 | ND | ND | ND | 11,000 J | ND
ND | | 4-Chloroaniline | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Hexachlorobutadiene | ND | ND | ND | ND
ND | ND | ND
ND ND | ND | | Caprolactam | ND
ND ND ND | ND | ND | ND | ND | ND | | 4-Chloro-3-methylphenol
2-Methylnaphthalene | ND
ND | 7,100,000 E | ND | 72,000 | ND | ND | ND | 1,800 J | 4,500 J | ND | ND | ND | ND | ND | | Hexachlorocyclopentadiene | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | | 2,4,6-Trichlorophenol | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | 2,4,5-Trichlorophenol | ND | ND | ND
ND | ND
5,500 | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND ND | ND | ND | ND | ND | | 1,1'-Biphenyl | ND
ND | 400,000
ND | ND
ND | 5,500
ND | ND ND | ND ND | | 2-Chloronaphthalone
2-Nitroaniline | ND | Dimethylphthalate | ND ND
NB | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 2,6-Dinitrotoluene | ND
ND ND | ND | ND | ND | ND | | Acenaphthylene
3-Nitroaniline | ND
ND | ND
ND | ND | Acenaphthene | ND 2,800 J | ND | ND | ND | ND | ND | | 2,4-Dinitrophenol | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 4-Nitrophenol | ND | ND | ND
ND ND ND | ND ND | ND | ND | | Dibenzofuran
2.4-Dinitrotoluene | ND
ND | 120,000
ND | ND
ND | ND
ND | ND
ND | ND | Diothyiphthalate | ND | ND | ND | 18,000 | ND | ND | 170,000 | ND | ND | ND | ND | 1,600 BJ | 14,000 J | 11,000 J | | Fluorene | ND | 300,000 | ND | 4,600 J | ND | ND | ND | ND | 1,500 J | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 4-Chlorophenyl-phenyl ether | ND | ND
ND ND ND | ND | ND | | 4-Nitroaniline
4,6-Dinitro-2-methylphenol | ND
ND | ND
ND | ND
ND | ND | N-Nitrosodiphenylamine | ND 5,500 | ND | ND | ND | ND | 14,000 J | 14,000 J | | 1,2,4,5 Tetrachlorobenzene | ND ND
ND | ND
ND | ND
ND | ND
ND | | 4-Bromophenyl-phenylether | ND
ND ND ND | | Hexachlorobenzene
Atrazine | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | Pentachiorophenol | ND 6,000 J | ND | ND | ND | ND | ND | ND | | Phenanthrone | ND | 1,100,000 E | ND | 11,000 | ND | ND | ND | ND | 1,500 J | ND | 11,000 J | ND
ND | ND
ND | ND
ND | | Anthracene | ND ND | 130,000 | ND
ND | 1,200 J | ND
ND | Carbazole
Di-n-buty(phthalate | ND
5,300 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND ND | ND | ND | ND | ND | ND | | Fluoranthene | ND ND | | Pyrene | ND ND
ND | ND
ND | | Butylbenzylphthalate | ND | ND
ND | 1,400 BJ | ND
ND | 3,3'-Dichtorobenzidine
Benzo(a)anthracene | ND
ND ND ND | ND ND | ND
ND | ND | ND | ND | ND | | Chrysene | ND ND | | bis(2-Ethythexyl)phthalate | 1,600 J | ND | ND | ND | ND | ND | ND | 1,400 J | ND | ND | ND | ND | ND | ND | | Di-n-octylphthalate | ND ND
ND | ND
ND | ND
ND | ND
ND | | Benzo(b)fluoranthene | ND
ND | Benzo(k)fluoranthene | ND
ND ND | ND | ND | | Benzo(a)pyrene
Indeno(1,2,3-cd)pyrene | ND ND | | Diberzo(a,h)anthracene | ND | Benzo(g,h,i)perylene | ND | 2, 3, 4, 6 -Tetrachlorophenol | ND ND
10 X DF | ND
10 X DF | Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Buldred. E- Sample concentrations exceeded the upper level of the calibration range. J - Indicates the reported value is no estimate. B - Indicates the reported value is no estimate. Dr. Indicates the analyte found in the associated method blank. Dr. Indicates the analyte was analyzed for but not detected. DF - Dilution Factor Page 6 of 9 | RST 2 Sample ID | P001-S-2001-1 | P001-S-2002-1 | P001-S-2003-1 | P001-S-3001-1 | P001-S-3001-2 | P001-S-3002-1 | P001-S-3003-1 | P001-S-3004-1 | P001-S-3005-1 | P001-S-3006-1 | P001-S-3007-1 | P001-S-3008-1 | P001-S-3009-1 | P001-8-3010-1 | |--|----------------|----------------------|----------------|---------------|----------------|----------------|----------------|----------------|---------------|---------------|-----------------|---------------|---------------|---------------| | | BAZQ9 | BAZZ9 | BB000 | BAZR0 | BAZR1 | BAZR2 | BAZR3 | BAZZ0 | BAZY9 | B0AL0 | B0AK4 | B0AK9 | B0AK8 | BOAK5 | | CLP Sample ID | | | | | Area03 | Area03 | Area@3 | Area03 | Lrea | Area02 | Area02 | Area02 | Area03 | | 9/20/2013 | 9/20/2013 | 9/26/2013 | 9/26/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | | Sampling Date | 9/20/2013 | 9/26/2013 | 9/26/2013 | 9/20/2013 | 9/20/2013 | | | | | Soil (ug/kg) | | Sample Matrix (Unit) | Soll (ug/kg) | Soil (ug/kg) | Soll (ug/kg) | Soll (ug/kg) | Soil (ug/kg) | ND ND | 510 J | 970 J | ND | ND | | Benzaldehyde | ND | ND | ND | ND | ND Y | ND
420 J | ND
1,500 | ND
ND | 120 J
ND | ND | ND | ND | ND | ND | | Phenol | 24,000 E
ND | ND
ND | ND
ND | ND
ND | 280 J
ND | ND ND | ND ND | | Bis-(2-Chloroethyl) ether
2-Chlorophenol | ND ND | ND
ND | ND
ND | | 2-Methylphenol | ND ND
ND | ND
ND | ND
ND | ND | ND | | 2,2'-oxybis(1-Chloropropane) | ND | ND | ND | ND | ND | ND | ND
520 J | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | Acetophenone | 12,000 | ND | ND
ND | 340 J
ND | 670 J
ND | 420 J
450 J | 670 J | ND | 4-Methylphenol | ND
ND | ND
ND | ND
ND | ND ND | ND
ND | | N-Nitroso-di-n-propylamine
Hexachloroethane | ND ND
ND | ND
ND | ND
ND | | Nitrobenzene | ND ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | | Isophorone | ND | ND | ND | ND | 60,000 E | ND | ND
NTD | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | | 2-Nitrophenol | ND
ND ND ND | | 2,4-Dimethylphenol Bis(2-Chloroethoxy)methane | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND ND | | 2,4-Dichlorophenol | ND ND
ND | ND
ND | ND
ND | | Naphthalene | 39,000 E | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | 4-Chloroaniline | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | ND | ND | ND | | Hexachlorobutadiene | ND
ND |
ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND ND | | Caprolactum 4-Chloro-3-methylphenol | ND
ND | ND
ND | ND ND | ND ND | | 2-Methylnaphthalene | 51,000 E | ND | ND | ND | ND | ND | 240 J | ND | ND | ND | 370 J | ND | ND
ND | ND
ND | | Hexachlorocyclopentadiene | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | ND | | 2,4,6-Trichlorophenol | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND ND | ND | ND | ND | ND | | 2.4.5-Trichlorophenol | ND
1 700 | ND
ND | ND
ND | ND
ND | ND
ND | ND ND | | 1,1'-Biphenyl 2-Chlorenaphthalene | 1,300
ND | ND
ND | ND | 2-Nitroaniline | ND ND
ND | ND
ND | ND
ND | | Dimethylphthalate | 260 J | ND ND
ND | ND
ND | ND
ND | ND ND | ND ND | ND | | 2,6-Dinitrotoluene | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
120 J | 62 J | ND | ND | ND | ND | ND | | Acenaphthylene | ND
ND | ND
ND | ND
ND | ND ND | | 3-Nitroaniline
Acenaphthene | ND ND | | 2,4-Dinitrophenol | ND ND
ND | ND
ND | ND
ND | | 4-Nitrophenol | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 4,800 | ND | ND | | Dibenzofuran | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND ND | ND ND | | 2,4-Dinitrotoluene
Diethylphthalate | ND
7,300 | ND
ND | ND
44,000 J | ND ND | ND | 980 | 42,000 E | ND | ND | ND | 580 J | ND | ND | 400 J | | Fluorene | 720 J | ND | ND ND | | 4-Chlorophenyl-phonyl other | ND ND
ND | ND
ND | ND
ND | | 4-Nitroaniline | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | 4,6-Dinitro-2-methylphenol | ND
1,400 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 610 J | ND | ND | ND | ND | 520 J | ND | ND | | N-Nitrosodiphenylamine
1,2,4,5 Tetrachlorobenzene | 1,400
ND | ND | ND ND | | 4-Bromophenyl-phenylether | ND ND
ND | ND
ND | | Hexachlorobenzene | ND ND
ND | Atrazine | ND
ND ND ND | ND | ND | ND | | Pentachiorophenoi
Phonanthrone | ND
2,000 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | 390 J | ND | ND | ND | | Anthracene | 200 J | ND | ND | ND | ND | ND | ND | 150 J | 73 J | ND | ND | ND | ND | ND | | Carbazole | ND | ND | ND | 850 J | ND | ND | 4,800 | ND | ND | ND
ND | ND
27,000 | ND
1,600 J | ND
ND | ND
4,800 | | Di-n-butyiphthalate | 6,000 | ND | 69,000 | 510 J | 400 J | 12,000 | 73,000 E | 150 J
100 J | ND
110 J | ND
ND | 23,000
640 J | 1,600 J
ND | ND
ND | ND | | Fluoranthene | 370 J
ND | 15,000 J
12,000 J | ND
ND | ND
1,000 | 270 J
1,500 | ND
ND | ND
ND | 100 J
140 J | 93 J | ND
ND | 640 J | ND
ND | ND | ND | | Pyrenc
Butylbenzylphthalate | ND
4,500 | 12,000 J
71,000 | ND
ND | 1,000
ND | ND | 100,000 E | 2,300 | ND | ND | ND | ND | ND | ND | ND_ | | 3,3'-Dichlorobenzidine | ND ND | | Benzo(a)anthracene | ND | ND | ND | ND | 430 J | ND | ND | ND | 72 J | ND | 380 J | ND
ND | ND
ND | ND
ND | | Chrysene | ND | 12,000 J | ND | ND | 480 J | ND ND | ND | 150 J
ND | 75 J
ND | ND
ND | 440 J
9,800 | ND
1,500 J | ND
4,400 | ND
ND | | bis(2-Ethythexyl)phthalate | 33,000 E | 70,000 | 30,000 J | 8,000
ND | 9,700
ND | 27,000 E
ND | 21,000 E
ND | ND
ND | ND
ND | ND
ND | 9,800
ND | ND | ND ND | ND | | Di-n-octylphthalate
Benzo(b)fluoranthene | ND
ND | ND
15,000 J | ND
ND | ND
ND | 790 J | ND
ND | ND | 250 J | 110 J | ND | ND | ND | ND | ND | | Benzo(k)fluoranthene | ND
ND | ND ND | ND ND | ND | 480 J | ND | ND | 98 J | 65 J | ND | ND | ND | ND | ND | | Benzo(a)pyrene | ND | ND | ND | ND | 1,400 | ND | ND | 160 J | 81 J | ND | ND | ND | ND | ND | | Indeno(1,2,3-ed)pyrene | ND | ND | ND | 320 J | 420 J | ND | ND | 110 J | ND | ND | ND | ND | ND | ND | | Dibenzo(a,h)anthracene | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | Benzo(g.h.i)perylene | ND | ND | ND | 930 J | 1,500
ND | ND
ND | ND
ND | 140 J
ND | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | ND ND | | 2, 3, 4, 6 -Tetrachlorophenol | ND | ND
10 X DF | ND
10 X DF | ND | ND | ND | ND | ND | ND | 10 X DF | Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Bidded. E- Sample concentrations exceeded the upper level of the calibration range. J- Indicates the reported value is an estimate. B- Indicates maybe found in the associated method blank. ND- Indicates the analyte was enalyzed for but not detected. DF- Dilution Factor Page 7 of 9 Table 2 Preliminary Analytical Data Summary Table - TCL SVOCs Superior Barrel and Drum Site September 2013 | RST 2 Sample ID | P001-S-3011-1 | P001-S-3012-1 | P001-S-3013-1 | P001-S-4001-1 | P001-S-4002-1 | P001-S-4003-1 | P001-S-5001-1 | P001-S-5002-1 | P001-S-5003-1 | P001-S-5004-1 | P001-S-5005-1 | P001-S-6001-1 | P001-S-6002-1 | P001-8-6003-1 | |---|---------------|---------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------| | TLP Sample ID | B0AK7 | B0AN6 | BAZY8 | BB001 | BB002 | BB003 | BAZZ1 | BAZZ2 | BAZZ8 | BAZZ3 | BAZZ4 | BAZR4 | BAZR5 | BAZR6 | | rea | Area03 | Area03 | Area03 | Area04 | Area04 | Area04 | Area05 | Area05 | Area05 | Area05 | Area05 | Area06 | Area06 | Area06 | | ampling Date | 9/27/2013 | 9/27/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | | | | | | | - | | | | | | | | | | 9/20/2013 | 9/20/2013 | 9/20/2013 | | iample Matrix (Unit) | Soil (ug/kg) | Soil (ug/kg) | Soll (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | Soll (ug/kg) | Soil (ug/kg) | Soft (ug/kg) | Soil (ug/kg) | Soit (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | | lenzaldehyde
henol | ND
ND | ND
3,200 | 130,000 E
870 | ND
ND | ND
ND | ND
ND | 62 J
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | Bis-(2-Chloroethyl) ether | ND
ND | ND | ND ND | ND
ND 1,200 J
ND | ND
ND | | -Chlorophenol | ND ND | ND ND | ND
ND | ND
ND | ND
ND | | 2-Methylphenol | ND | 2,2'-oxybis(1-Chloropropane) | ND | Acetophenone | ND
ND | ND
1,600 J | ND
ND | 7,600
ND | ND | ND | 140 J | ND | ND | ND | ND | 43 J | 100,000 E | ND | | 4-Methylphenol
N-Nitroso-di-n-propylamine | ND ND | ND | ND ND | ND
ND ND | | Hexachloroethane | ND ND | ND ND | ND | ND
ND | ND
ND | ND
ND | | Nitrobenzene | ND | sophorone | ND | 2-Nitrophenol | ND
ND | ND | 2,4-Dimethylphenol
Bis(2-Chloroethoxy)methane | ND
ND ND | ND | | 2,4-Dichlorophenol | ND ND | ND ND | ND
ND | Naphthalene | 520 J | ND | ND | ND | ND | ND | 77 J | ND | ND | ND | ND | ND | 340,000 E | ND | | -Chloroaniline | ND ND | ND | | Hexachlorobutadiene | ND
ND | ND
ND | ND
ND | ND | Caprolactam
4-Chloro-3-methylphenol | ND
ND ND | 2-Methylnaphthalene | 1,100 J | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND
85 J | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
15,000 | ND
ND | | Hexachlorocyclopentadiene | ND ND | ND ND | ND ND | ND
ND | | 2,4,6-Trichlorophenol | ND | 2,4,5-Trichlorophenol | ND | .1'-Biphenyl
-Chloronaphthalene | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND 800 J | ND | | 2-Nitroaniline | ND ND | ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND | ND | | Dimethylphthalate | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 2,6-Dinitrotoluene | ND | Acenaphthylene | ND | ND | ND | ND | ND | ND | 1,400 | ND | 1,600 J | 3,100 | ND | ND | ND | ND | | 3-Nitroaniline Acenaphthene | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | 2,4-Dinitrophenol | ND ND | ND | ND
ND | ND
ND | ND
ND | 870 J
ND | 230
ND | ND
ND | ND
ND | 530 J | ND | ND | ND | ND | | 4-Nitrophenol | ND | ND | ND | ND | ND | ND | ND
ND ND | | Dibenzofuran | ND | ND | ND | ND | ND | ND | 97 J | ND | ND | ND | ND ND | ND
ND | ND ND | ND
ND | | 2,4-Dinitrotoluene | ND | Diethylphthalate
Fluorene | 24,000
ND | ND
ND | ND
ND | ND | 1,600 J | ND | 4-Chlorophenyl-phenyl ether | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 680 J
ND | 380
ND | ND | 580 J | 850 J | 840 J | ND | ND | ND | | 4-Nitroaniline | ND | ND | ND | ND | ND | ND ND | ND
ND | 4,6-Dinitro-2-methylphenol | ND ND | ND
ND | ND | ND
ND | ND
ND | | N-Nitrosodiphenylamine | ND ND
ND | | 1,2,4,5 Tetrachlorobenzene
4-Bromophenyi-phenylether | ND
ND | ND
ND | ND | Hexachlorobenzene | ND
ND ND | ND | ND | ND | ND | | Atrazine | ND | ND | ND | ND | ND | ND | ND
ND ND | | Pentachlorophenol | ND ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | | Phenanthrone | ND
ND | ND | 380 | ND | ND | 3,700 | 3,500 E | ND | 4,100 | 6,100 | 5,700 | ND | ND ND | 80 J | | Anthracene | ND
ND | ND
ND | 420
1,000 | ND | ND | 790 J | 2,200 | ND | 4,100 | 4,500 | 3,400 | ND | ND | ND | | X-n-butylphthalate | 1,200 J | 560 J | 1,000
ND | ND
ND | ND
ND | ND
ND | 340
57 J | ND
ND | ND
ND | 740 J | ND | ND | ND | ND | | luoranthene | ND | ND ND | 770 | ND ND | ND
ND | 1,600 J | 6,800 E | ND
ND | ND
5,900 | ND
12,000 | ND
8,900 | 120 J | 2,700 | 140 J | | yrone | ND | ND | 890 | ND | ND | 1,500 J | 4,100 E | ND | 5,300 | 9,300 | 7,700 | ND
ND | ND
ND | 160 J
93 J | | utylbenzylphthalate | ND ND | ND ND | | 3'-Dichlorobenzidine
enzo(a)anthracene | ND
ND | ND
ND | ND MA | ND | hrysene | ND
ND | ND
ND | 440
590 | ND
ND | ND
ND | 700 J | 2,800 E | ND | 3,600 | 6,500 | 4,900 | ND | ND | 70 J | | s(2-Ethylhexyl)phthalate | 21,000 | 1,600 J | 3,800 E | 53,000 E |
ND
ND | 910 J
ND | 3,100 E
ND | ND
ND | 3,300
ND | 6,800 | 5,300 | ND | ND | 88 J | | N-n-octylphthalate | ND | ND | ND ND | ND ND | ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | 870 J
ND | 170 J | 5,600 | 56 J | | enzo(b)fluoranthene | ND | ND | 590 | ND | ND | ND | 3,600 E | ND | 3,800 | 7.900 | ND
5,300 | ND
ND | ND
ND | ND | | enzo(k)fluoranthene | ND | ND | 430 | ND | ND | ND | 1,200 | ND | 2,000 | 4300 | 2,500 | ND | ND
ND | 65 J
35 J | | enzo(a)pyrene | ND | ND | 240 J | ND | ND | 470 J | 2,900 E | ND | 3,400 | 6,900 | 5,200 | ND
ND | ND ND | 65 J | | ndeno(1,2,3-cd)pyrene
hbenzo(a,h)anthracene | ND
ND | ND
ND | 360
ND | ND | ND | ND | 1,700 | ND | 1,800 J | 4,200 | 2,800 | ND | ND | 45 J | | enzo(g,h,i)perviene | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 450 | ND | 490 J | 1,100 J | 770 J | ND | ND | ND | | 3, 4, 6 -Tetrachlorophenol | ND | ND ND | ND | ND
ND | ND
ND | ND
ND | 1,200
ND | ND | 1,900 J | 4,000 | 2,800 | ND | ND | 44 J | | | 10 X DF | 10 X DF | NU | 10 X DF | 10 X DF | 10 X DF | ND | ND
10 X DF | ND | ND | ND | ND | ND | ND | Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Belderd. Detected concentrations exceeded the upper level of the calibration range. J - Indicates the reported value is an estimate. B - Indicates manaphe found in the associated method blank. ND - Indicates the analyte was analyzed for but not detected. DF - Dilution Factor Page 8 of 9 | RST 2 Sample ID | P001-S-6004-1 | P001-8-6005-1 | P001-S-6005-2 | P001-S-6006-1 | P001-S-6007-1 | P001-S-6008-1 | P001-S-7001-1 | P001-S-7002-1 | P001-S-7003-1 | P001-SW-1001-1 | P001-SW-3001-1 | P001-SW-3001-2 | P001-SW-3002-1 | P001-SW-6001-1 | |--|---------------|---------------|---------------|----------------|----------------|---------------|---------------|---------------|--------------------|----------------------|----------------------|----------------------|----------------------|-------------------| | TLP Sample ID | BAZZ7 | BAZY3 | BAZY4 | BAZZ5 | BAZZ6 | BAZY2 | BAZY5 | BAZY6 | BAZY7 | BB019 | BB020 | BB0E1 | BB0E2 | BB0E3 | | ines | Area06 | Area06 | Area06 | Area06 | Area06 | Area06 | Area07 | Area07 | Area07 | Area01 | Area03 | Area03 | Area03 | Area06 | | | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/26/2013 | 9/27/2013 | | | | | | Sampling Date | | | | | | | | | | | 9/27/2013 | 9/27/2013 | 9/27/2013 | 9/27/2013 | | Sample Matrix (Unit) | Soil (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | Soll (ug/kg) | Soil (ug/kg) | Soll (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | Soil (ug/kg) | Surface Water (ug/L) | Surface Water (ug/L) | Surface Water (ug/L) | Surface Water (ug/L) | Surface Water (ug | | Prenol | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 7,200
ND | ND | ND | ND | ND | ND | ND | 3.9 J | ND | | nenot Bis-(2-Chloroethyl) ether | ND
ND | 2-Chlorophenol | ND ND
ND | ND | | 2-Methylphenol | ND | 2,2'-oxybis(1-Chloropropane) | ND | Acetophenone
4-Methylphenol | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | 3,100
ND | ND
ND | ND
ND | ND
ND | 1.7 J | ND | ND ND | 5.5 | ND | | N-Nitroso-di-n-propylamine | ND ND
ND | lexachloroethane | ND | Vitrobenzene | ND | Isophorone
2-Nitrophenol | ND
ND ND | ND | ND | ND | ND | ND | | 2,4-Dimethylphenol | ND ND | ND
ND | ND ND | ND ND | ND ND | ND
ND ND | | Bis(2-Chloroethoxy)methane | ND ND | ND ND | ND | ND
ND | ND
ND | ND
ND | | 2,4-Dichlorophenol | ND | Naphthalene | ND
ND | ND
ND | ND
ND | ND | 4-Chloroaniline
Hexachlorobutadiene | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND | ND | ND | ND | | Caprolactam | ND | ND | ND | ND | ND
ND | 4-Chloro-3-methylphenol | ND ND | ND ND | | 2-Mothylnaphthalone | ND | ND | ND | ND | 3,500 | ND | Hexachlorocyclopentadiene
2,4,6-Trichlorophenol | ND
ND ND | ND | ND | ND | ND | ND | | 2,4,5-Trichlorophenol | ND | ND ND | ND
ND | .1'-Biphenyl | ND ND | ND | | -Chloronaphthalene | ND | 2-Nitroaniline
Dimethylphthalate | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | 2,6-Dinitrotoluene | ND ND | ND ND | ND
ND ND | ND | ND | | Acenaphthylene | ND | ND | ND | 15,000 J | ND | ND | ND | ND | 1,100 J | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | | 3-Nitroaniline | ND | Acenaphthene
2,4-Dinitrophenol | ND
ND | ND
ND | ND | 4-Nitrophenol | ND ND | ND
ND ND | ND | ND | ND | ND | | Dibenzofuran | ND ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 2,4-Dinitrotoluene | ND | Diethylphthalate | ND
ND | ND | Fluorene
4-Chlorophenyl-phonyl ether | ND
ND ND | 4-Nitroaniline | ND | ND | ND | ND ND | ND ND | ND ND | ND
ND | 4,6-Dinitro-2-methylphenol | ND ND | ND
ND | ND
ND | | N-Nitrosodiphenylamine | ND | 1,2,4,5 Tetrachlorobenzene
4-Bromophenyl-phenylether | ND
ND ND | lexachlorobenzene | ND | ND | ND ND | ND | ND ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | | Atrazine | ND ND
ND | ND
ND | ND
ND | | Pentachiorophenol | ND
ND | ND | Phenanthrene
Anthracene | ND
ND | ND
ND | ND
ND | ND
15,000 J | ND
ND | ND
ND | ND
ND | ND | Carbazole | ND | ND | ND | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | 1,200 J
ND | ND
ND | ND
ND | ND | ND | ND | | Di-n-butylphthalate | ND ND
ND | ND
ND | ND
8.4 | ND
7.2 | ND
7.1 | ND
8.5 | ND
6,7 | | Fluoranthene | ND | ND | ND | 17,000 J | 3,800 | 380 J | ND | ND | 1,600 J | ND | ND | ND ND | ND ND | ND | | Pyrene
Butylbenzylphthalate | ND
ND | ND
ND | ND
ND | 16,000 J | 6,300 | 420 J | ND | ND | 1,500 J | 0.49 J | ND | ND | ND | ND | | 3'-Dichlorobenzidine | ND ND | ND
ND ND | ND | ND | ND | | lenzo(a)unthracene | ND | ND | ND | 13,000 J | 1,800 J | ND | ND
ND | ND
ND | 1,100 J | ND
ND | ND
ND | ND
ND | ND
ND | ND | | Thrysene | ND | ND | ND | 15,000 J | 2,300 | ND | ND | ND | 1,300 J | ND ND | ND ND | ND ND | ND
ND | ND
ND | | is(2-Effiylhexyl)phthalate
h-n-octylphthalate | ND
ND | ND
ND | ND | 29,000 J | 630 J | 2,500 | ND | ND | 2,600 J | 22 | ND | ND | 2.2 J | ND | | A-n-octypnmaste
lenzo(b)fluoranthene | ND
ND | ND
ND | ND
ND | ND
31,000 J | ND
2 200 | ND | ND | ND | ND | ND | 2.0 J | ND | ND | ND | | lenzo(k)fluoranthene | ND | ND | ND
ND | 7,900 J | 2,300
980 J | ND
ND | ND
ND | ND
ND | 2,400 J | ND | ND | ND | ND | ND | | Senzo(a)pyrene | ND | ND | ND | 19,000 J | 1,500 J | ND ND | ND
ND | ND
ND | 1,000 J
1,500 J | ND
ND | ND
ND | ND
ND | ND | ND | | ndeno(1,2,3-ed)pyrene | ND | ND | ND | 15,000 J | 990 J | ND | ND | ND | 1,100 J | ND ND | ND
ND | ND
ND | ND
ND | ND
ND | | Dibenzo(a,h)anthracene | ND
ND | ND ND | ND
ND | | Senzo(g,h,i)perylene
, 3, 4, 6 -Tetrachlorophenol | ND
ND | ND
ND | ND
ND | 17,000 J | 1,000 J | ND | ND | ND | 1,300 J | ND | ND | ND | ND | ND | | The state of s | 10 X DF | ND | ND | ND
10 X DF | ND Notes: All results are preliminary and have not gone through any data review or validation process. Detected concentrations are Bolded. Detected concentrations reacconded the upper level of the calibration range. J. Indicates the reported value is an estimate. B. Indicates maybe found in the associated method blank. ND - Indicates the analyte found in the associated method blank. DF - Dilution Factor Page 9 of 9